Synaptic mechanisms of persistent reverberatory activity in neuronal networks.

نویسندگان

  • Pak-Ming Lau
  • Guo-Qiang Bi
چکیده

For brain functions such as working memory and motor planning, neuronal circuits are able to sustain persistent activity after transient inputs. Theoretical studies have suggested that persistent activity can exist in recurrently connected networks as active reverberation. However, the actual cellular processes underlying such reverberation are not well understood. In this study, we investigated the basic synaptic mechanisms responsible for reverberatory activity in small networks of rat hippocampal neurons in vitro. We found that brief stimulation of one neuron in a network could evoke, in an all-or-none fashion, reverberatory activity lasting for seconds. The reverberation was likely to arise from recurrent excitation because it was eliminated by partial inhibition of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (but not by blockade of NMDA receptors). In contrast, blocking inhibitory transmission with bicuculline enhanced the reverberation. Furthermore, paired-pulse stimuli with interpulse intervals of 200-400 ms were more effective than single pulses in triggering reverberation, apparently by eliciting higher levels of asynchronous transmitter release. Suppressing asynchronous release by EGTA-AM abolished reverberation, whereas elevating asynchronous release by strontium substantially enhanced reverberation. Finally, manipulating calcium uptake into or release from intracellular stores also modulated the level of reverberation. Thus, the oft-overlooked asynchronous phase of synaptic transmission plays a central role in the emergent phenomenon of network reverberation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium and synaptic dynamics underlying reverberatory activity in neuronal networks.

Persistent activity is postulated to drive neural network plasticity and learning. To investigate its underlying cellular mechanisms, we developed a biophysically tractable model that explains the emergence, sustenance and eventual termination of short-term persistent activity. Using the model, we reproduced the features of reverberating activity that were observed in small (50-100 cells) netwo...

متن کامل

Calcium and synaptic dynamics underlying reverberation

Persistent activity is postulated to drive neural network plasticity and learning. To investigate its underlying cellular mechanisms, we developed a biophysically tractable model that explains the emergence, sustenance and eventual termination of short-term persistent activity. Using the model, we reproduced the features of reverberating activity that were observed in small (50–100 cells) netwo...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 29  شماره 

صفحات  -

تاریخ انتشار 2005